686 research outputs found

    Probability density adjoint for sensitivity analysis of the Mean of Chaos

    Full text link
    Sensitivity analysis, especially adjoint based sensitivity analysis, is a powerful tool for engineering design which allows for the efficient computation of sensitivities with respect to many parameters. However, these methods break down when used to compute sensitivities of long-time averaged quantities in chaotic dynamical systems. The following paper presents a new method for sensitivity analysis of {\em ergodic} chaotic dynamical systems, the density adjoint method. The method involves solving the governing equations for the system's invariant measure and its adjoint on the system's attractor manifold rather than in phase-space. This new approach is derived for and demonstrated on one-dimensional chaotic maps and the three-dimensional Lorenz system. It is found that the density adjoint computes very finely detailed adjoint distributions and accurate sensitivities, but suffers from large computational costs.Comment: 29 pages, 27 figure

    The prospect of using LES and DES in engineering design, and the research required to get there

    Full text link
    In this paper we try to look into the future to divine how large eddy and detached eddy simulations (LES and DES, respectively) will be used in the engineering design process about 20-30 years from now. Some key challenges specific to the engineering design process are identified, and some of the critical outstanding problems and promising research directions are discussed.Comment: accepted for publication in the Royal Society Philosophical Transactions

    Optimization of Gaussian Random Fields

    Full text link
    Many engineering systems are subject to spatially distributed uncertainty, i.e. uncertainty that can be modeled as a random field. Altering the mean or covariance of this uncertainty will in general change the statistical distribution of the system outputs. We present an approach for computing the sensitivity of the statistics of system outputs with respect to the parameters describing the mean and covariance of the distributed uncertainty. This sensitivity information is then incorporated into a gradient-based optimizer to optimize the structure of the distributed uncertainty to achieve desired output statistics. This framework is applied to perform variance optimization for a model problem and to optimize the manufacturing tolerances of a gas turbine compressor blade
    • …
    corecore